Expression of mRNAs coding for the alpha 1 chain of type XIII collagen in human fetal tissues: comparison with expression of mRNAs for collagen types I, II, and III
نویسندگان
چکیده
This paper describes the topographic distribution of the multiple mRNAs coding for a novel human short-chain collagen, the alpha 1 chain of type XIII collagen. To identify the tissues and cells expressing these mRNAs, human fetal tissues of 15-19 gestational wk were studied by Northern and in situ hybridizations. The distribution pattern of the type XIII collagen mRNAs was compared with that of fibrillar collagen types I, II, and III using specific human cDNA probes for each collagen type. Northern hybridization showed the bone, cartilage, intestine, skin, and striated muscle to contain mRNAs for type XIII collagen. An intense in situ hybridization signal was obtained with the type XIII collagen cDNAs in the epidermis, hair follicles, and nail root cells of the skin, whereas the fibrillar collagen mRNAs were detected in the dermis. Cells in the intestinal mucosal layer also appeared to contain high levels of alpha 1(XIII) collagen mRNAs, but contained none of the fibrillar collagen mRNAs. In the bone and striated muscle, alpha 1(XIII) collagen mRNAs were detected in the mesenchymal cells forming the reticulin fibers of the bone marrow and endomycium. The hybridization signal obtained with the alpha 1(XIII) collagen cDNA probe in cartilaginous areas of the growth plates was similar, but less intense, to that obtained with the type II collagen probe. A clear hybridization signal was also detected at the (pre)articular surfaces and at the margins of the epiphyses, whereas it was weaker in the resting chondrocytes in the middle of the epiphyses. The brain, heart, kidney, liver, lung, placenta, spleen, testis, tendon, and thymus did not appear to contain alpha 1(XIII) collagen mRNAs.
منابع مشابه
The mRNAs for the three chains of human collagen type XI are widely distributed but not necessarily co-expressed: implications for homotrimeric, heterotrimeric and heterotypic collagen molecules.
In cartilage collagen type XI exists as heterotrimeric molecules composed of alpha 1(XI), alpha 2(XI) and alpha 3(XI) subunits. Messenger RNAs for some of the alpha chains of collagen type XI have also been found in non-chondrogenic tissues but the chain composition of the molecule in these sites is not known. Some non-chondrogenic tissues also contain heterotrimers containing collagen alpha 2(...
متن کاملDifferential expression of type I and type III collagen genes during tooth development.
Collagen gene expression during mouse molar tooth development was studied by quantitative in situ hybridization techniques. Different expression patterns of type I and type III collagen mRNAs were observed in the various mesenchymal tissues that constitute the tooth germ. High concentration for pro-alpha 1(I) and pro-alpha 2(I) collagen mRNAs were found within the osteoblasts. We found that the...
متن کاملExpression of Collagen Type II and Osteocalcin Genes in Mesenchymal Stem Cells from Rats Treated with Lead acetate II
Background: Lead is one of the sustainable metals with devastating effects on many tissues. This study, examined the adverse effect of lead poisoning on the gene expression of collagen type II and osteocalcin by mesenchymal stem cells (MSCs) cultured in chondrogenic and osteogenic media, respectively. Methods: We used 18 male Wistar rats, divided in 3 groups. In addition to libitum feed as the...
متن کاملThe Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study
Objective(s): Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collage...
متن کاملThe Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study
Background Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collagen type I gene ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 109 شماره
صفحات -
تاریخ انتشار 1989